
v1.2 - October 4, 2019QI GenericDivViewGenericDivView Tutorial

This tutorial shows the basics behind the GenericDivView that is part of jPOS-EE's QI module.

QI
Some of our products, such as jCard, use a web user interface developed using the Vaadin 8 framework. The QI module is
part of jPOS-EE and provides a way of configuring the general layout of the web app, with menus, sidebars, permissions,
etc. For a quick introduction to QI, refer to the corresponding section in the jPOS-EE manual. Here we do an even briefer
introduction to support the explanation of GenericDivView .

When a QI application is launched (such as modules/app in jCard), it will read a deploy file in the deploy directory,
normally called 00_qi.xml

The general format is

<xml-config name="QI" logger="Q2">
 <locale>en-US</locale>
 <locale>es-ES</locale>

 <messages>some_properties_file</messages>
 <!-- ... etc ...
 the label translations, per locale
 -->

 <!-- The menu bar runs at the top of the screen. Each menu item has an "action". -->
 <menubar>
 <menu name="TopMenu1_label" action="sidebar1" />
 <menu name="TopMenu1_label" action="sidebar2" />
 </menubar>

 <!-- A sidebar runs down the left side of the screen. Each "option" has an "action". -->
 <sidebar id="sidebar1">
 <!-- A section is just a label used as a separator -->
 <section name="First_Section" />
 <option name="option1_label" action="option1" />
 <option name="option2_label" action="option2" />
 ...
 ...
 <section name="Second_Section" />
 <option name="users_label" action="users" />
 ...
 </sidebar>

 <sidebar id="sidebar2">
 ...
 </sidebar>

 <!-- Each "action" from a menubar "menu" or sidebar "option" maps to a Vaadin View implemented by a specific class.
 The "route" is the URL part generated when navigating to that view.
 Each "view" also identifies a sidebar that will be shown when the view is activated.
 -->

https://vaadin.com/docs/v8/framework/tutorial.html
http://jpos.org/doc/jPOS-EE.pdf

 <view route="home" class="org.jpos.qi.views.DefaultView" perm="*" sidebar="system" />
 <view route="about" class="org.jpos.qi.system.AboutView" perm="login" sidebar="system"/>

 <!-- some views may have additional "properties" and other custom XML (configured by configuration polling by the
 class itself). The one below is given just as an example, and the meaning is beyond the scope of this tutorial.
 -->
 <view route="users" class="org.jpos.qi.eeuser.UsersView" perm="users.write" sidebar="system">
 <property name="entityName" value="user"/>
 <attribute name="id" field="false" required="true"/>
 <attribute name="nick" length="64" regex="&WORD_PATTERN;" required="true" expand-ratio="1"/>
 ...
 </view>

 ...
</xml-config>

Here's a sample screen from jCard. The Users option and view from the xml example above would be equivalent to
what is marked and shown on the screen shot below.

When the user clicks on a menu item from the top menubar or an option item from the displayed sidebar , its
corresponding action is mapped into a route URL fragment. The browser navigates to that route, and the view
element that declares said route attribute is displayed in the Main View Area. Also, if the view element has a sidebar
attribute, the sidebar section is changed to the sidebar with that id . The displayed view is an instance of
com.vaadin.navigator.View and implemented by the class given in the class attribute.

GenericDivViewGenericDivView
As we've seen, the main area of the screen is rendered by an instance of com.vaadin.navigator.View using the usual

Vaadin API. However, there's a special kind of view called GenericDivView that provides an "empty" <div> that can
be dynamically populated by external HTML files, loading JavaScript and CSS dependencies. This allows us to "bridge" the
world of server-side Vaadin development in Java, and the world of traditional client-side web development.

The general form to specify a GenericDivView is:

<xml-config>
...

<sidebar id="sidebar1">
 <option name="MyView" action="myview" />
 ...
</sidebar>
...
<view route="myview" class="org.jpos.qi.views.GenericDivView" perm="*" sidebar="sidebar1">
 <!--
 this is a *filesystem* path, relative to the "current working dir" of the process
 the content of this file will be used as the html content of the GenericDivView wrapping div
 -->
 <property name="src" value="path/to/div.html" />

 <!--
 External dependencies on script and css files.
 They are URL paths that will be resolved by Vaadin and used by the browser to request
 the dependency.
 The path could be relative to the root of the "webapp", or use a "vaadin:" protocol in
 order to be resolved into the VAADIN 8 special directory.
 -->
 <property name="script" value="vaadin://js/some_other_script.js" />
 <property name="script" value="webapps/js/some_script.js" />
 <property name="css" value="webapps/css/my_style.css" />
 ...
</view>

GenericDivViewGenericDivView example
As a "quick and dirty" example, we'll use the jPOS-EE module testbed and add a new sidebar option with a sample
script based on the Vue.js framework. This section assumes you are familiar with usual jPOS development, such as using
gradle , the devel.properties file, etc.

NOTE: To keep things simple and the level of noise low, this example doesn't use any other external tools for
web development, frameworks, modern JavaScript/ECMAScript conventions, or other current web
development practices. The integration of such tools and practices are very project- and team-dependant,
and are left as an excercise for the reader.

1. Clone jPOS-EE
If you haven't done so, please clone JPOS-EE from https://github.com/jpos/jPOS-EE . The testbed module is based on
Jetty and has the QI modules as dependencies. There are other dependencies that we don't care about.

2. Create the main div html file
First, create the file modules/testbed/src/dist/webapps/myview.html with the following content:

https://vuejs.org/
https://github.com/jpos/jPOS-EE

<div id="my_view">
 This is the html from myview.html

 <p>{{ message }}</p>
 <button click="reverseMessage">Click to Reverse</button>

 <p id="output_text"></p>
</div>

<script>
 var vueApp = new Vue({
 el: '#my_view',

 data: {
 message: 'Hello GenericDivView!'
 } ,

 methods: {
 reverseMessage: function () {
 this.message = this.message.split('').reverse().join('');
 document.getElementById('output_text').innerText= "did it work?";
 }
 }
 });
</script>

3. Download Vue.js
We're going to be using a local copy of Vue.js. Follow whatever method you want from
https://vuejs.org/v2/guide/installation.html to get a hold of a copy of the library. For example, download it directly from
https://cdn.jsdelivr.net/npm/vue/dist/vue.js and put the copy in
modules/testbed/src/main/webapp/VAADIN/js/vue.js (create any intermediate directories that may be missing)

4. Add some style
Let's add a little external style to our div above.

Create the file modules/testbed/src/dist/webapps/css/my_style.css :

#my_view {
 background-color: #ffff88; /* light yellow */
}
#my_view button {
 color: white;
 background-color: red;
}

5. Edit the QI layout file
Now, edit the file modules/testbed/src/dist/deploy/00_qi.xml .

First, find the system sidebar and add a new option at the top

...
<sidebar id="system">

v-on:

https://vuejs.org/v2/guide/installation.html
https://cdn.jsdelivr.net/npm/vue/dist/vue.js

 <section name="system"/>
 <option name="My View" action="myview"/>
...

Now, we'll ned to add a <view> for the myview action/route. Find the <!-- VIEWS --> section and add:

<view route="myview" class="org.jpos.qi.views.GenericDivView" perm="*" sidebar="system">
 <!-- this is the id of the <div> element that's going to wrap myview.html -->
 <property name="id" value="myview_wrap"/>

 <!-- this file was taken from the `dist` directory of the source, and copied into
 the build
 -->
 <property name="src" value="webapps/myview.html" />

 <property name="script" value="vaadin://js/vue.js" />
 <property name="css" value="/css/my_style.css" /> <!-- the leading slash is important! -->
</view>

6. Build, create and configure the DB, run it
For testbed to work, we need to setup a database that will allow us to login, and other parts of the system to work. The
module's DB connection configuration is in file modules/testbed/src/dist/cfg/db.properties and it's
hardcoded to use MySQL, a db name of jposee , and username jpos , and password password .

How to use a different database engine and/or configuration is outside the scope of this tutorial.

After your database has been created, we need to build the system and initialize the db. The following commands should
be run from the root of the cloned jPOS-EE project.

build with the command gradle :modules:testbed:installApp
NOTE: for reasons beyond the scope of this document, please run the above command twice

😀 😀

run Q2 in "command line mode" ./modules/testbed/build/install/testbed/bin/q2 -cli

at the q2> prompt, enter the following commands

createschema - true
addrole admin sysadmin login sysconfig.read sysconfig.write users.read users.write accounting
adduser admin -ptest -radmin -n"System Administrator"
addgluser admin -n"System Administrator" -p"read" -p"write" -p"post" -p"checkpoint"
sysconfig
add sys.REMEMBER_PASSWORD_ENABLED true
add sys.MAX_LOGIN_ATTEMPTS 5
add sys.PASSWORD_AGE 90
add perm.login "Can log into the system"
add perm.sysadmin "Has administrator privileges"
add perm.sysconfig "Has access to sysconfig records"
exit

shutdown

run testbed with the command ./modules/testbed/build/install/testbed/bin/q2

7. Test it
If testbed launched correctly, you should now be able to point your browser to http://localhost:8080 and log in
with user admin and password test .

You should get a screen with a menubar at the top that says System . Click on it and the sidebar will be displayed. The
first item (<option> in 00_qi.xml) of the sidebar will be called My View . Clicking on it will navigate to
http://localhost:8080/jpos/#!/myview (notice how the last part of the URL is the action attribute of the sidebar option).

The main area of the screen will now show your GenericDivView which is a Vaadin 8 View that has been configured
from the options given in the <view route="myview" ...> of our example:

populated by the content of webapps/myview.html
some script and css dependencies have been dynamically added to the current document (you can inspect it
with the web development tools of your browser and find those dependencies added into the document's <head> .

8. Summary
There are many things not covered here. Some people may choose to develop using tools such as webpack, transpilers,
using libraries for calling REST APIs using Ajax or similar methodologies, etc. In order to allow for that, you may need to
configure the web server (Jetty at the moment) and add other files to aid you in your toolchain.

http://localhost:8080/jpos/#!/myview
https://webpack.js.org/

